Gerhard Richter

Gerhard Richter

jueves, 19 de diciembre de 2013

Tangencias PRC caso particular


1. Datos: PRC, donde P es interior y R secante a C:

2. P es el centro de inversión y el segmento representativo de la raíz cuadrada de la potencia es la semicuerda perpendicular a la recta que pasa por P y por O en el punto P:

3. Circunferencia de puntos dobles y figura inversa a la circunferencia dada (circunferencia verde): 

4. Figura inversa a la recta dada, circunferencia que pasa por el centro de inversión y por dos puntos dobles (los de intersección de la recta con la cpd). 
Ahora procedemos a trazar las tangentes comunes a las dos circunferencias (que son las figuras inversas de la circunferencia y la recta dadas).

5. La circunferencia naranja es la circunferencia auxiliar que necesitamos para hallar las tangentes comunes a las dos circunferencias:

6. En rojo la primera tangente común, su figura inversa es una de las circunferencias solución:

7. La otra recta tangente común y las dos circunferencias solución posibles:



sábado, 14 de diciembre de 2013

Tangencias, problema 10 de Apolonio "CCC"

Circunferencias de radio desconocido que son tangentes a tres circunferencias dadas:

1. Datos:

2. Reducción de las tres circunferencias la magnitud del radio de la circunferencia menor. En este punto los nuevos datos con los que trabajamos son : el punto O1, la circunferencia C2 (verde) y la circunferencia C3 (verde); el ejercicio en este punto se resuelve como el problema de Apolonio nº 8, PCC.

3. Inversión de centro O1, donde la circunferencia de centro O2 se transforma en ella misma:



4. Figura inversa de la circunferencia C3 (verde fina): para ello hallamos el inverso del punto P, P' y trazamos una circunferencia (verde de trazo grueso) que pasa por P', y por los puntos dobles de intersección de C3 con la cpd.


5. Resolvemos el problema de rectas tangentes comunes a dos circunferencias, de estas rectas sólo vamos a escoger una de ellas, la tangente común exterior superior:


6. La recta tangente común escogida es la recta naranja:


7. Figura inversa a la recta tangente naranja, es la circunferencia de centro OS y que pasa por los inversos de T2' y T3': T2 y T3 y por el centro de inversión O1, en este dibujo vemos cómo se han hallado los inversos T2 y T3:


8. En este dibujo se ha trazado la circunferencia que pasa por T2, T3 y O1, además se ha hallado el centro OS:


9. Y, por último, hemos reducido la magnitud del radio R1 y obtenemos la solución:


Este problema tiene hasta otras 7 soluciones posibles. (dependiendo del resto de tangentes que podríamos haber escogido y de haber dilatado las circunferencias C2 y C3 la magnitud del radio de la circunferencia C1)



lunes, 9 de diciembre de 2013

Tangencias PCC

Aquí van los dibujos del octavo problema de Apolonio: PCC

Circunferencias de radio desconocido que son tangentes a dos circunferencias dadas y que pasan por un punto dado.

Este problema se resuelve por inversión. Una inversión de centro el punto dado "P", donde una de las circunferencias dadas se transforme en ella misma, la otra circunferencia se transformará en otra circunferencia homotética, cuyo centro de homotecia es el centro de inversión.

Una vez calculado el radio de la circunferencia de puntos dobles (que tendrá que ser el segmento PT, segmento representativo de la raíz cuadrada de la potencia del punto P respecto de la circunferencia dada que se transforma en ella misma), hallamos la circunferencia inversa de la otra circunferencia dada.

Trazamos las rectas tangentes comunes a las circunferencias transformadas por inversión. Las soluciones serán las figuras inversas de dichas rectas.

En los siguientes dibujos sólo se ha procedido a determinar una de las cuatro posibles soluciones.






domingo, 8 de diciembre de 2013

viernes, 29 de noviembre de 2013

Análisis Icónico

Trabajo para los alumnos de 3º Imagen:

Realizar el análisis icónico de la siguiente imagen:


Para realizar el análisis será imprescindible averiguar cual es la imagen original, es decir, investigar cuál es el referente de la imagen y su procedencia.

Para esta labor de investigación tenéis esta pista: "Un Perro Andaluz"

A continuación tenéis dos documentos para imprimirlos que os sirven de fichas de análisis:

Ficha de análisis iconográfico:


Ficha de análisis iconológico:




miércoles, 20 de noviembre de 2013

Dibujo Técnico II: Inversión, enunciados y soluciones

Cuatro enunciados:

Enunciado nº 1:

Halla la figura inversa del cuadrado ABCD de 30 mm de lado, conocido el centro de inversión, O = B y el inverso de C, C', es un punto doble.
Pasos y solución:



Solución:




Enunciado nº 2:

Halla la figura inversa del cuadrado ABCD de 30 mm de lado, conocido el centro de inversión O  y el inverso de D, D', es un punto doble.
Pasos y solución:






Solución:



Enunciado nº3:

Dado un punto O, centro de inversión y una potencia de inversión k = 16 y una recta r, horizontal, a una distancia de 30 mm de O, se pide hallar la figura inversa de r, r'.

Solución:



Enunciado nº 4:

Dado un punto O, centro de inversión y una potencia de inversión k = 16, se pide hallar la figura inversa de una recta r cualquiera que sea tangente a la circunferencia de puntos dobles.

Datos y Solución: